
Hamming weight based Model Counting

Benchmarks

Anil Shukla, Sravanthi Chede

Indian Institute of Technology Ropar, Rupnagar, India

1 Introduction

The provided benchmarks are unweighted model counting instances generated
from unweighted MaxSAT benchmarks of 2024 [2] without any hard clauses.

In [3], a proof system for MaxSAT is introduced which works as follows:
Given a CNF formula ϕ, a new CNF ϕ′ :=

∧
C∈ϕ

(C ∨ hC) where hC are new vari-

ables is considered such that minUnSAT(ϕ) = min Hamming weight(ϕ′, {hC | C ∈
ϕ}). Note that, if Φ is a CNF formula and Y be a subset of variables of Φ, the
minimum Hamming weight of Φ with respect to Y is the minimum number of
variables ∈ Y which can be set to 0 among all models of Φ. That is,

Min Hamming weight (Φ, Y) = min
α|=Φ

|{y ∈ Y | α(y) = 0}|

In knowledge compilation there exist target languages like DNNFs (Decom-
posable Negation Normal Forms) where minimum Hamming-weight is easy to
compute [4]. Hence if one can represent ϕ′ as a equivalent DNNF D′, then the
minUnSAT problem of ϕ is easy.

For the model counting benchmarks, we carefully picked ϕ from unweighted
MaxSAT-2024 benchmarks and converted them to ϕ′ as described above.

2 Generator

Users can generate the submitted benchmarks by downloading the unweighted
MaxSAT 2024 benchmarks (available here [2]) which are a total of 553 instances.
Among these pick the instances without any hard clauses, these are 39 in total.
For ease, these are among three classes of filenames namely, ‘CircuitDebugging-
Problems’, ‘ramsey-ram’ and ‘SeanSafarpour’. For each such instance ϕ (say
‘r.wcnf’) follow the python script to obtain the benchmark ϕ′ (say ‘r hw.cnf’).

from pysat.formula import WCNF

from pysat.formula import CNF

cnf=CNF()

cnf = WCNF(from_file=’r.wcnf’).unweighted ()

cnf.to_file(’r.cnf’, comments=None , compress_with=’use_ext ’)

1

try:

oldFile = open("r.cnf", ’r’)

newFile = open("r_hw.cnf", ’w’)

except:

print("error")

return

oldstring=oldFile.readline ()

oldstring=oldstring.strip("\n")

old_array=oldstring.split(" ")

n_vars=int(old_array[2])

m_clauses=int(old_array[3])

h_id=n_vars+1

tot_h=n_vars+m_clauses

newstring=old_array[0]+" "+old_array[1]+" "+tot_h+" "+old_array[3]

newFile.write(newstring+"\nc t mc\n")

while(True):

oldstring=oldFile.readline ()

oldstring=oldstring.strip("\n")

old_array=oldstring.split(" ")

if (old_array[0]==""):

break

old_array[-1]= -h_id

h_id=h_id+1

newstring = ’ ’.join(str(x) for x in old_array)

newFile.write(newstring+" 0\n")

oldFile.close ()

newFile.close ()

Hardness: If any compiler (say ‘d4’ [1]) computes a target language repre-
sentation (say dec-DNNFs) for ϕ′, then it has also inherently computed repre-
sentations for all ϕ′|all assignments to variables of hC

. As a result, these submitted
benchmarks might be hard for model counting solvers using knowledge compi-
lation solving techniques.

Experimentally we have tested the hardness using the ‘d4’ knowledge com-
piler [1] on a system with 256GB RAM and 1TB storage for about 10 hours per
instance. We have submitted 37 of the 39 generated benchmarks as the remain-
ing 2 (namely, ‘ramsey-ram k4 n5.ra0 hw.cnf’ and ‘ramsey-ram k4 n8.ra0 hw.cnf’)
are found to be easy for the ‘d4’ compiler.

References

[1] d4 knowledge compiler. URL: https://github.com/crillab/d4.

[2] Maxsat 2024 benchmarks. URL: https://maxsat-evaluations.github.
io/2024/benchmarks.html.

[3] Florent Capelli. Knowledge compilation languages as proof systems. In
SAT 2019 Procedings, volume 11628, pages 90–99. Springer, 2019. URL:
https://doi.org/10.1007/978-3-030-24258-9_6.

2

https://github.com/crillab/d4
https://maxsat-evaluations.github.io/2024/benchmarks.html
https://maxsat-evaluations.github.io/2024/benchmarks.html
https://doi.org/10.1007/978-3-030-24258-9_6

[4] Adnan Darwiche and Pierre Marquis. Compiling propositional weighted
bases. Artif. Intell., 157(1-2):81–113, 2004. URL: https://doi.org/10.
1016/j.artint.2004.04.005, doi:10.1016/J.ARTINT.2004.04.005.

3

https://doi.org/10.1016/j.artint.2004.04.005
https://doi.org/10.1016/j.artint.2004.04.005
https://doi.org/10.1016/J.ARTINT.2004.04.005

	Introduction
	Generator

